Fractal Dimension Analysis of Aluminum Corrosion Roughness by Electrochemical and Optical Methods


  •   Elsa Carmina Menchaca-Campos

  •   Erika Rocio Villalba-Enciso

  •   Victor Juarez-Nuñez

  •   Miriam Flores-Dominguez

  •   Darwin Mayorga-Cruz

  •   Rene Guardian Tapia

  •   Jorge Uruchurtu-Chavarin


Fractal dimension is a versatile method to study and evaluate corrosion from the point of view of metallic conditions, namely: surface roughness, electrochemical measurements and microscopy images. Aluminum corrodes at different rates, under different pH electrolytes with or without the presence of chloride ions. In this work, corrosion and the surface roughness for aluminum corrosion at different pH electrolytes: acid, with and without chlorides, neutral and basic solutions, were obtained. It was measured and obtained using electrochemical and optic techniques. The results of Electrochemical Impedance Spectroscopy (EIS) and Noise Measurements (ENM), Digital Holographic Microscopy (DHM), Scanning Electron Microscope (SEM) micrographs and their respective Fractal Dimension analysis were obtained.. For the different experimental techniques and conditions, fractal dimension was obtained and presented, reflecting the surface condition of aluminum corrosion as a function of pH solution.

Keywords: Fractal Dimension, Electrochemical Techniques, Holographic Microscopy, Aluminum


B. B. Mandelbrot. The Fractal Geometry of Nature. New York: Ed. W. H. Freeman & Co., 1991.

A. J. V. Vaamonde. and J. J. D. González. Science and Engineering of the Surface Modification on Metallic Materials. Madrid: Ed. Consejo Superior de Investigaciones Cientificas, 2001.

M. P. Groover. Fundamental of Modern Manufacturing: Materials, Processes, and Systems. New York: John Wiley & Sons, 2010.

C. Galván. “New software for 2D and 3D roughness data analysis”. Metrology Symposium, SM2008-S3D1-1027-1, 2008.

K.F. Sherwood. and J.R. Crookall. “Surface finish assessment by an electrical capacitance technique”. Proc. Inst. Mech. Eng. 182 (3K). pp. 344-349.1967-1968.

G.V. Blessing. and E. D. Eitzen. “Surface roughness sensed by ultrasound”. Surf. Topogr. Vol. 1.pp. 143-158. 1998.

C.W. O. Sosa. M. Sierra. C.A. P. Vargas. and L. A. Salcedo. “Analisis de rugosidad por microscopia de fuerza atomica (AFM) y software SPIP aplicado a superficies vítreas”, Revista Colombiana de Fisica. Vol. 38, 2. pp.826-829.2006.

R. P. Sierra. R. G. Romero-Paredes. and G. A. Rodriguez. “Estudio de la morfología superficial e índice de refracción en películas nanométricas de silicio poroso”. Superficies y Vacio. Vol. 13. pp. 92-96. 2001.

D. Mayorga. D. Uribe. R. Guardian. C. Menchaca-Campos. and J. Uruchurtu. “Optical Interferometric Corrosion Protection Evaluation of a Coated Copper in Sulphate/Chloride Solution”. Innovations in Corrosion and Materials Science (Formerly Recent Patents on Corrosion Science). Vol. 7, 1. pp. 46-51. 2017.

J. A. Marbán-Salgado. D. Mayorga-Cruz. J. Uruchurtu-Chavarín.and O. Sarmiento-Martínez. “Quantification of corrosion products formation onto a copper sample by digital holographic microscopy”. Opt. Pura y Apl.Vol. 46,1. pp. 49-54. 2013.

Oscar Sarmiento-Martinez. José A. Marban-Salgado. Darwin Mayorga-Cruz. Jorge Uruchurtu-Chavarin. and Estela Sarmiento-Bustos. “Rough Surfaces Profiles and Speckle Patterns Analysis by Hurst Exponent Method”. Journal of Materials Science and Engineering. Vol. B3, 12, pp.759-766. 2013.

E.H. Sherrington and H. Smith. “Modern measurement techniques in surface metrology: Part I. Stylus instruments, electron microscopy and non-optical comparators”. Wear. Vol. 125. pp.271-288.1988.

E.H. Sherrington. and H. Smith.” Modern measurement techniques in surface metrology: Part II. Optical instruments”. Wear. Vol. 125. pp. 289-308.1988.

L. Li. C. Wang. B. Yuan. and S. Chen. “Numerical reconstruction of digital holograms for the study of pitting dynamic processes of the X70 carbon steel in NaCl solution”, Electrochem. Commun. Vol. 10. pp.103-107. 2008.

P. E. Klages. In Situ Real-Time Visualization and Corrosion Testing of Stainless Steel 316LVM with Emphasis on Digital in-line Holographic Microscopy.PhD Thesis. Dalhousie University. Halifax. Nova Scotia. 2012.

N. Andrés. J. Lobera. M. P. Arroyo, and L. A. Angurel. “Two-dimensional quantification of the corrosion process in metal surfaces using digital speckle pattern interferometry”. Appl. Opt. Vol. 50, pp. 1323-1328. 2011.

P. S. Huang. F. Jin. and F. P. Chiang. “Quantitative evaluation of corrosion by a digital fringe projection technique”. Opt. Lasers and Eng. Vol. 31, pp. 371-380. 1999.

T. de J. Licona-Sanchez. G.A. Alvarez-Romero. L. H. Mendoza-Huizar. C. A. Galan-Vidal. M. Palomar-Pardave. M. Romero-Romo. H. Herrera-Hernadez. J. Uruchurtu, and J.M. Juarez-Garcia. “Nucleation and Growth Kinetics of Electrodeposited Sulfate-Doped Polypyrrole: Determination of the Diffusion Coefficient of SO42− in the Polymeric Membrane”. J. Phys.Chem. Vol.B114, 30. pp.9737-9743. 2010.

J. L. Guiñon.J. García-Anton. V. Perez-Herranz. and G. Lacaste. “Use of Differential Pulse Polarography to Study Corrosion of Galvanized Steel in Aqueous Lithium Bromide Solution”. Corros. Vol. 50, 2. pp. 91-97.1994.

D.M. García-García. J. García-Antón. M. A. Igual-Muñoz. and E. Blasco-Tamarin, “Effect of cavitation on the corrosion behaviour of welded and non-welded duplex stainless steel in aqueous LiBr solutions”. Corros. Sci. Vol.48, 9. pp. 2380-2405.2006.

E. Samiento-Bustos. J.G. González Rodriguez. J. Uruchurtu. G. Dominguez-Patiño. and V. M. Salinas-Bravo. “Effect of inorganic inhibitors on the corrosion behavior of 1018 carbon steel in the LiBr + ethylene glycol + H2O mixture”. Corros. Sci. Vol. 50, 8. pp.2296-2303. 2008.

E. Samiento-Bustos, J.G. González Rodriguez, and J. Uruchurtu, “A study of the corrosion inhibition of carbon steel in a bromide solution using fractal analysis”. Surf. Coat. Technol. Vol. 203. 1-2. pp. 46-51. 2008.

M. Saremi. C. Dehghanian. and M. Sabet. “The effect of molybdate concentration and hydrodynamic effect on mild steel corrosion inhibition in simulated cooling water”. Corros. Sci. Vol. 48, 6. pp.1404-1412. 2006.

K. Hladky. and J. L. Dawson. “The Measurement of Corrosion Using Electrochemical 1/f Noise”. Corros. Sci.Vol. 22, pp. 231-235. 1982.

C. Gabrielli. F. Huet. M. Keddam.and R.Oltra. NACE Conference in Localized Corrosion. Orlando: NACE-9. 1987.

B. B. Mandelbrot. E. Dann. A. Passoja. And J. Paullay. “Fractal character of fracture surfaces of metals”. Nature, Vol. 308, pp.721–722.1984

J. Feder. Fractals. New York: Plenum Press. 1989.

U. Cano. J. M. Malo. and J. Uruchurtu-Chavarin. “Aluminum Corrosion in Chloride Solution. Is it Chaos or is it Electrochemical Noise?” Corrosao e Proteccao de Materiais. Vol. 13, 1. pp. 6-12. 1994.

U. Cano. J. M. Malo. and J. Uruchurtu-Chavarín. “¿Es Caos o es Ruido Electroquímico? Corrosión del Aluminio en Medio Salino”. Rev. de Metal. Vol.28, 6. pp.348-352, 1992.

E. Almeida. L. Mariaca. A. Rodríguez. J. Uruchurtu. and M. A. Veloz. Electrochemical Noise Measurements for Corrosion Applications, ASTMSTP 1277.1996.

J. Uruchurtu. “Electrochemical Investigations of the Activation Mechanism of Aluminum,” Corrosion.Vol. 47,6, pp. 472-479. 1991.

J. Uruchurtu. NACE Conference in Localized Corrosion.Orlando: NACE-9, 1987.

J. M. Bastidas. and J. M. Malo. “Electrochemical Noise 1/f in the Study of Corrosion Inhibitor Efficiency”. Rev. Metal. Vol. 21, 6. pp.337-340. 1985.

C. T. Chen. and B. S. Skerry. “Assessing the Corrosion Resistance of Painted Steel by Electrochemical Noise Technique”. Corrosion.Vol. 47, 8. pp. 598-611. 1991.

J. Uruchurtu-Chavarin. and J. M. Malo. “Electrochemical Noise as a Powerful Electrochemical Technique for Corrosion Studies,” Research Trends. Vol. 2. pp. 49-58. 1997.

R. F. Voss. and J. Clarke. “Flicker (1/f) noise: Equilibrium temperature and resistance fluctuations”. Phys. Rev.Vol. B 13, 556-561. 1976.

K. Habib, F. Al-Sabti, H. Al-Mazidi, “Optical corrosion-meter”. Proc SPIE, 2577, pp. 210-217, 1995.

D. H. Hensler, “Light scattering from fused polycrystalline aluminum oxide surfaces”. App. Optics.Vol. 11, pp. 2522-2528.1972.

T. V. Vorburger. E. Marx. and T. R. Lettieri. “Regimes of surface roughness measurable with light scattering”. App. Optics.Vol. 32, 19.pp. 3401-3408.1993.

U. Persson. “In-process measurement of surface roughness using light scattering”. Wear. Vol. 215.pp. 54-58.1998.

C. J. Tay. S.H. Wang. C. Quan. and H. M. Shang. “In situ surface roughness measurement using a laser scattering method”. Optics Communications.Vol. 218.pp. 1-10.2003.

G.Y. Tian. R. S. Lu. and D. Gledhill. “Surface measurement using active vision and light scattering”. Optics and Lasers in Eng. Vol. 45. pp. 131-139.2007.

R.L. Voti, G.L. Leahu, S. Gaetani, C. Sibilia, V. Violante, E. Castagna, and M. Bertolotti. “Light scattering from a roughmetal surface: theory and experiment”. J. Opt. Soc.Am.Vol. B26, 8. pp.1585-1593. 2009.

U. Persson. “Surface roughness measurement on machined surfaces using angular speckle correlation”. J. of Mats. Process Tech.Vol. 180. pp. 233-238.2006.

M. A. Rebollo. M. R. Landau.E. N. Hogert. N. G. Gaggioli.and M. Muramatsu. “Roughness determination by direct visual observation of the speckle pattern”. Optics and Laser Tech. Vol. 27, 6.pp. 355-356.1995.

D. Leger.and J. C. Perrin. “Real-time measurement of surface roughness by correlation of speckle patterns”. J. Opt. Soc.Am. Vol. 66, 11.pp. 1210-1217.1976.

S. L. Toh. H. M. Shang.and C. J. Tay. “Surface-roughness study using laser speckle method”. Optics and Lasers in Eng. Vol. 29.pp. 217-225. 1998.

H. Nitta. and T. Asakura. “Measurements of fine particle size using a speckle correlation technique”.Meas. Sci. Technol. Vol. 1. pp. 131-135.1990.

M. Hamed. and M. Saudy.“Computation of surface roughness using optical correlation”. J. of Physics. Vol. 68, 5.pp. 831-842. 2007.

H. Fujii. T. Asakura. and Y. Shindo. “Measurement of surface roughness properties by using image speckle contrast”. J. Opt. Soc. Am.Vol. 66, 11. pp.1217-1222. 1976.

L.C. Leonard. and V. Toal.“Roughness measurement of metallic surfaces based on the laser speckle contrast method”. Optics and Laser in Eng. Vol. 30. pp. 433-440.1998.

X.Z. Zhao. and Z. Gao.“Surface roughness measurement using spatial-average analysis of objective speckle pattern in specular direction”. Optics and Lasers in Eng. Vol. 47. pp. 1307-1316.2009.

B. Dhanasekar. N. K. Mohan. B. Bhaduri. and B. Ramamoorthy. “Evaluation of surface roughness based on monochromatic speckle correlation using image processing”. Precision Eng. Vol. 32. pp. 196-206.2008.

V. M. Huynh. S. Kurad. W. North.“Texture analysis of rough surfaces using optical Fourier transform”. Meas. Sci. Technol. Vol. 2. pp. 831-837.1991.

S. L. Toh. C. Quan. K. C. Woo. C. J. Tay. and H. M. Shang.“Whole field surface roughness measurement by laser speckle correlation technique”. Optics and Laser Technology. Vol. 33. pp. 427-434.2001.

K. Habib. “Holographic interferometric in predicting cathodic deposition of metals in aqueous solution”. Proc. SPIE.Vol. 1230.pp. 293-296. 1990.

K. Habib. W. Mohammad. F. Karim. and J. Dutta. “Resistance Values of Aluminum Oxide Film in Situ during Anodization of Aluminum by Fabry-Pérot Interferometry”. ECS Trans.Vol. 80.10, pp. 1221-1229. 2017.

Mayorga-Cruz, J. Uruchurtu-Chavarín, O. Sarmiento-Martínez, P. A. Márquez-Aguilar, J. Castrellón-Uribe. “Estimation of Corrosion Parameters in Electrochemical Systems Using Michelson Interferometry”. Proceedings of the International Society for Optical Engineering (SPIE), 6046(0J), 115-120, 2006.

D. Gabor, “A new microscopic principle”. Nature, 161. pp. 777-778. 1948.

T. Kreis. Handbook of Holographic Interferometry, Optical and Digital Methods. Weinheim:Wiley-VCH Verlag GmbH & Co. KGaA. 2005.

M. Takeda. I. Hideki. and S. Ki. “Fourier-transform method of fringe-pattern analysis for computer-based topography and interferometry”. J. Opt. Soc. Am. Vol. 72. pp. 156-160. 1982.

J. W. Goodman. and R. W. Lawrence. “Digital image formation from electronically detected holograms”. Appl. Phys. Lett. Vol. 11. pp. 77-79. 1967.

U. Schnars. and W. Jüptner. Digital Holography: digital hologram recording, numerical reconstruction and related techniques. Berlin-Heidelberg: Springer-Verlag. 2005.

I. Yamaguchi. and T. Zhang. “Phase-shifting digital holography”. Opt. Lett.Vol. 22. pp. 1268-1270.1997.

T. Zhang, and I. Yamaguchi. “Three-dimensional microscopy with phase-shifting digital holography”. Opt. Lett.Vol. 23, 15. pp. 1221-1223.1998.

M. K. Kim. Digital Holographic Microscopy: Principles, Techniques and Applications. New York: Springer-Verlag. 2011.

M. Mayrhofer-Reinhartshuber and H. Ahammer. “Pyramidal fractal dimension for high resolution images”. Chaos. Vol. 26. 073109. 2016.

H. Ahammer and T. T. J. DeVaney. “The influence of edge detection algorithms on the estimation of the fractal dimension of binary digital images”. Chaos.Vol. 14, 183. 2004.

M. G. Fontana. and N. D. Greene. Corrosion Engineering. New York; Mc Graw Hill. 1978,

F. Jin. And F. P. Chiang. “Nondestructive evaluation of corrosion by fractal geometry”. Res. Nondestr. Eval., Vol. 7, 4. pp. 229–238.1996.

G. N. Frantziskonis. L. B. Simon. J. Woo. and T. E. Matikas. “Multiscale characterization of pitting corrosion and application to an aluminum alloy”. Eur. J. Mech. A/Solids.Vol. 19.pp. 309–318. 2000.

Z. Chuan. C. Yanhui. And Y.Weixing. “The use of fractal dimensions in the prediction of residual fatigue life of pre-corroded aluminum alloy specimens”. Int. J. Fatigue. Vol. 59. pp. 282–291.2014.

S. Xu. and B. Qiu. “Experimental study on fatigue behavior of corroded steel”. Mater. Sci. Eng., A, Vol. 584. pp. 163-169.2013.

X.Wang. J.Wang. C.Fu. and Y.Gao. “Determination of corrosion type by wavelet_based fractal dimension from electrochemical noise”. Int. J. Electrochem. Sci. Vol. 8, pp. 7211–7222.2013.

S. Xu. And Y.Weng. “A new approach to estimate fractal dimensions of corrosion images”. Pattern Recognit. Lett. Vol. 27. 16. pp. 1942-1947.2006.

M. Pourbaix. Atlas of Electrochemical Equilibria in Aqueous Solutions. Houston: NACE International, CEBELCOR. 1966.

M. A. González-Núñez, and J. Uruchurtu-Chavarín. “R/S fractal analysis of electrochemical noise signals of three organic coating samples under corrosion conditions”. J. of Corrosion Sci. and Eng.Vol. 6. C117. 2003.

M. Moon. and B. Skerry. “Interpretation of Corrosion Resistance Properties of Organic Paint Films from Fractal Analysis of Electrochemical Noise Data”. J. of Coat. Tech. Vol. 67, 843, pp. 35-41. 1995.

B. Zaid. D. Saidi. A. Benzaid. and S. Hadji. “Effects of pH and chloride concentration on pitting corrosion of AA6061 aluminum alloy”, Corr. Sci. Vol. 50, 7, pp. 1841-1847. 2008.

O. Sarmiento-Martinez, J. A. Marban-Salgado, D. Mayorga-Cruz, J. Uruchurtu- Chavarin and E. Sarmiento-Bustos, “Rough Surfaces Profiles and Speckle Patterns Analysis by Hurst Exponent Method”. J. of Mat. Sci. and Eng. B 3. Vol. 12. pp.759-766. 2013.

J. Garcia-Sucerquia.C.Trujillo. and J. F. Restrepo. “Reconstrucción de hologramas de microscopía holográfica digital en línea a velocidad de video”. Dyna.Vol. 79. 173. pp. 25-31. 2012.

R. B. Mears, “Aluminum and Aluminum Alloys," Chapter 10. Corrosion Handbook. Edited by H. H. Uhlig. New York: John Wiley and Sons, Inc. 1948.

H. Kaesche. Localized Corrosion, Ed. R. W. Staehle, Houston: NACE, NACE-3. 1974.


Download data is not yet available.


How to Cite
Menchaca-Campos, E., Villalba-Enciso, E., Juarez-Nuñez, V., Flores-Dominguez, M., Mayorga-Cruz, D., Tapia, R. and Uruchurtu-Chavarin, J. 2020. Fractal Dimension Analysis of Aluminum Corrosion Roughness by Electrochemical and Optical Methods. European Journal of Engineering Research and Science. 5, 3 (Mar. 2020), 282-291. DOI: