Fractographic Analysis of GTAW Robotic Welded Joints Fractured under Stress in Experimental HSLA Cr-Ni Steel

##plugins.themes.bootstrap3.article.main##

  •   Leyva L. Orión

  •   Rosel P. Graciela

  •   Gámez-C. Hugo

Abstract

The welding current (A), arc voltage (V) preheating (°C), travel speed (mm·min-1) and net heat input (Qnet) were evaluated, on the strength and morphology of the fracture in experimental HSLA Cr-Ni steel welded joints, with commercial (ERS70S-6) filler metal and robotic GTAW technique. The samples were characterized by uniaxial stress tests, stereoscopy and Digital Image Processing (DIP). The results showed that the resistance to fracture of the experimental steel was exceeded by 18.39% by applying Qnet 0.520 (kJ·mm-1) and the combination of: 200 A, 12.7 V, 25 °C and 180 mm min-1, which influenced the ductile fracture morphology and topology. While the low Qnet (0.200-0.208 kJ·mm-1) favors instantaneous deformation of the welded joints with fracture in the weld bead as the major defect.


Keywords: digital fractography, digital image processing (DPI), resistance to fracture, robotic GTAW

References

Kumar Jena P., Sentil P., Kumar K. S. Effect of tempering time on the ballistic performance of a high strength armour steel. Journal of applied research and technology, 2016; 14(1): 47-53.

Cimpoeru S. The Mechanical Metallurgy of Armour Steels, Technical Report. Commonwealth of Australia, Melbourne. pp. 2, 14-17, 2016.

García Jacobo R. Efecto de la Potencia laser del proceso HLAW en uniones de acero HSLA 550 sobre la microestructura y propiedades mecánicas. 7 Junio, 2019.

Belzunce F. Aceros y fundiciones: estructuras, transformaciones, tratamientos térmicos y aplicaciones, Oviedo, 2001.

American Welding Society (AWS). D1.1, Structural Welding Code. American Welding Society, 2010.

American Welding Society (AWS). Welding Inspection Technology (WIT). AWS, Miami Florida, 2000.

Guzmán Flores I., Vargas Arista B., Gasca Domínguez J., Cruz González C., Pardo Villasana J. Effect of Torch Weaving on the Microstructure, Tensile and Impact Resistances, and Fracture of the HAZ and Weld Bead by Robotic GMAW Process on ASTM A36 Steel, Soldagem & Inspeção, 2017; 22(1): 73-76.

Hongliang Ming, Jianqiu Wang, En-Hou Han. Comparative study of microstructure and properties of low-alloy-steel/nickel-based-alloy interfaces in dissimilar metal weld joints prepared by different GTAW methods. Materials Characterization, 2018; 138: 186-196.

Vargas Arista B., Albiter A., García Vázquez F., Mendoza Camargo O. Effect of natural aging on the microstructural regions, mechanical properties, corrosion resistance and fracture in welded joints on API5L X52 steel pipeline. Revista de Metalurgia., 2014; 50(3): 2-9.

Camargo O., Vargas B., Camargo J.M. Digital processing of fractographic images for welded joints on micro alloy steel API5L-X52 aged. IEE Latin America transactions, 2013; 11(1): 172-176.

Vargas Arista B., Mendoza Camargo O., Zaragoza Rivera I. P., Medina Flores A., Cuevas Salgado A., Garfias García E., García Vázquez F. Influence of heat input on the charpy ductile fracture behavior of reheated HAZ in GMAW multilayer welded joints on HSLA steel using digital fractographic analysis. Revista de Metalurgia, Junio 2019; 55(2): 1-10.

Fuentes A., Vargas B., Cruz C.E., Estrella V., Zaragoza I.P. Efecto del calor de entrada sobre la microestructura y microdureza en uniones soldadas GTAW-P robotizadas para acero HSLA. Química hoy, 2020; 10(2): 815.

Da-Hai Xia, Shizhe Song, Lei Taoc, Zhenbo Qin, Zhong Wu, Zhiming Gao, Jihui Wang, Wenbin Hua, Yashar Behnami and, Jing-Li Luo. Reviewmaterial degradation assessed by digital image processing: Fundamentals, progresses, and challenges, Journal of Materials Science & Technology, 2020; 53:146–162.

Korsmik R., Klimova-Korsmik O., Valdaytseva E., Udin I. Investigation of cracking causes during multi-pass laser cladding of heatresistant single crystal nickel alloy. Procedia CIRP, 2020; 94: 314319.

Boob A. N., Gattani G. K. Study on Effect of Manual Metal Arc Welding Process Parameters on Width of Heat Affected Zone (HAZ) for Ms 1005 Steel. International Journal of Modern Engineering Research (IJMER), June 2013; 3:1493-1500.

Bailey N. Weldability of ferritic steels. In Woodhead Publishing Series in Welding and Other Joining Technologies, Cambridge England, 1994, pp. 1-44.

Luo W. The corrosion resistance of 0Cr19Ni9 stainless steel arc welding joints with and without arc surface melting. Materials science & Engineering, pp. 1-7, 2003.

American Society for Testing and Materials. ASTM E415-14, Standard test Method for analysis of carbon and low-alloy steel by spark atomic emission spectrometry. ASTM International, West Conshohocken, 2014.

American Welding Society. AWS A5.18/A5, Specification for carbon steel and rods for gas shielded arc welding. ANSI AWS, Miami Florida, 2005.

Singh R. Applied Welding Engineering (Second Edition). Butterworth-Heinemann, pp. 131-162, 2016.

Singh R. Applied Welding Engineering (Third Edition). Butterworth Heinemann, pp. 125-155, 2020.

American Society for Testing and Materials. ASTM E-8-E-8M-13, International standard test methods for tension testing of metallic materials. ASTM, West Conshocken, 2013.

Le Jolu T., Morgeneyer T. F., Denquin A., Sennour M., Laurent A., Besson J.S., Gourgues-Lorenzon A. Microstructural Characterization of internal Welding Defects and their effect on the tensile behavior of FSW joints of AA2198 Al-Cu-Li alloy. Metallurgical and Materials Transactions A, Springer Verlag/ASM International, 2014; 45:5531-5544.

Downloads

Download data is not yet available.

##plugins.themes.bootstrap3.article.details##

How to Cite
[1]
Orión, L.L., Graciela, R.P. and Hugo, G.-C. 2021. Fractographic Analysis of GTAW Robotic Welded Joints Fractured under Stress in Experimental HSLA Cr-Ni Steel. European Journal of Engineering and Technology Research. 6, 7 (Nov. 2021), 42-47. DOI:https://doi.org/10.24018/ej-eng.2021.6.7.2635.